MCK: Model Checking the Logic of Knowledge*

Peter Gammie! and Ron van der Meyden?

! Computing Science, Chalmers Institute of Technology, Sweden,
peteg@cs.chalmers.se
2 School of Computer Science and Engineering, University of New South Wales,
and National ICT Australia, Sydney, Australia
meyden@cse.unsw.edu.au

Introduction: The specification formalism employed in model checking is usu-
ally some flavour of temporal or process algebraic language that expresses prop-
erties of the behavioural aspects of a system. Knowledge [5] is a modality that
is orthogonal to the behavioural dimension, capturing properties of information
flow. Logics of knowledge have been shown to be a useful framework for the
analysis of distributed algorithms and security protocols, and model checking of
these logics was first mooted by Halpern and Vardi [6]. Since that time theoret-
ical aspects of model checking the logic of knowledge and its combinations with
temporal logic have been studied [8-10]. The system MCK introduced in this
paper implements parts of this theory.

The Model Checking Scenario: The typical scenario that can be analysed
using the system consists of some number of agents (which might be players in
a game, actors in an economic setting, or processes, programs or components
in a computational setting) interacting in the context of an environment. The
agents have the capacity to perform certain actions in this environment, which
they choose according to their individual protocols, or sets of rules. The agents
have incomplete information about the state of the system due to the fact that
they are able to observe only part of the state at each instant of time.

The MCK system can be used to analyse this type of setting by the use
of model checking techniques. The input to the MCK system describes: (1) the
environment in which the agents operate, including a formal description of agent
names, states, initial states, actions and how they affect states, and fairness
conditions; (2) the protocol for each of the named agents, and a description
of what parts of the state can be observed by which agents; (3) a number of
specification formulas to be model checked, expressing how the agents’ knowledge
evolves over time. Both the possible state changes selected by the environment
and the agents’ choices of action may be non-deterministic.

The MCK system supports several different types of temporal and epistemic
specifications. In the epistemic dimension, agents may use their observations in
a variety of ways to determine what they know. In the observational interpre-
tation of knowledge, agents make inferences about the actual state based just

* To appear CAV 2004, copyright Springer Verlag. Work of the first author conducted
while employed at UNSW. Work funded by an Australian Research Council Discov-
ery grant. National ICT Australia is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Research Coun-
cil.

on their current observation. In the clock interpretation of knowledge, agents
compute knowledge using both their current observation and the current global
clock value. Even more information can be extracted by the agent if it uses a
complete record of all its observations to date to determine what it knows —
this is called the synchronous perfect recall interpretation of knowledge. In the
temporal dimension, the specification formulas may use either linear time tempo-
ral logic, LTL, or the branching time logic CTL. The system supports different
combinations of these parameters to different degrees, which in some cases is
because the implementation remains to be undertaken and in others is due to
inherent computational difficulties. In the case of the observational semantics,
for example, the system supports arbitrarily nested combinations of either CTL
or LTL operators with operators for knowledge and common knowledge, a type
of fixpoint of the knowledge of many agents. In contrast, the perfect recall se-
mantics only supports a linear or branching “next time” operator, although the
theory for the full combination of knowledge with LTL has been developed [9].

The custom modelling language used in MCK is designed to cater for some
specific issues arising from the semantics of knowledge and to allow maximum
modelling flexibility; the intention is to support experimentation in this compar-
atively unexplored area rather than verification for a specific language.

Application Example: Figure 1 presents an example input file to the system
which models a scenario where the single agent, a robot called Robot (running
the protocol "robot") operates in an environment of 8 possible positions. The
environment provides noisy readings of the position to the robot via the sensor
variable, which is declared to be an observable input to the agent. The robot’s
goal is to halt in the region {2..4}, which its protocol attempts to achieve by
halting when the sensor value is > 3. We would like to verify that this is the
best the robot can do given its observations, which is to say that the condition
sensor > 3 characterises all situations in which the agent knows that it is in the
goal region when it is running this particular protocol.

The transitions section represents the effects of the robot’s actions (Halt
and skip) on the state, by means of a program using non-deterministic if state-
ments. This program is considered to run atomically in a single tick of the clock.

The example contains two specification formulas. The construct spec_obs_1t1
indicates that the formula uses linear time temporal logic operators and that the
knowledge operator Knows is to be interpreted using the observational semantics.
The operator G expresses truth at all future times. The model checker verifies that
this formula is indeed true. The use of spec_spr_xn in the second specification
indicates that the knowledge modality should be interpreted using synchronous
perfect recall, and that the formula has the form X"¢, where ¢ is atemporal,
expressing that ¢ holds in precisely n steps after an initial state (n = 2 in this
example). The model checker verifies that this formula is false. Intuitively, the
determinacy of the robot’s motion allows it to derive its location from the num-
ber of observations made. This means that the test sensor >= 3 is not complete
— the right-to-left implication fails. If we alter the transitions part to allow

position to either increment or remain static and add a fairness condition to
ensure progress, this formula becomes true, but is still false for n = 3.

type Pos = {0..7}
position : Pos
sensor : Pos
halted : Bool

init_cond = position == 0 /\ sensor == 0 /\ neg halted

agent Robot "robot" (sensor)

transitions
begin
if Robot.Halt -> halted := True fi;
if neg halted -> position := position + 1 fi;
if True -> semsor := position - 1
[1 True -> sensor := position
[l True -> sensor := position + 1
fi
end

spec_obs_1tl = G (sensor >= 3 <=> Knows Robot position in {2..4})
spec_spr_xn = X 2 (sensor >= 3 <=> Knows Robot position in {2..4})

protocol "robot" (sensor : observable Pos)

begin
do neg (sensor >= 3) -> skip
[1 break -> <<Halt>>
od

end

Fig. 1. A Sample MCK input file.

Implementation Sketch: The system constructs a BDD representation of a
data structure that encodes the knowledge set of an agent, i.e. the set of states
that are consistent with its local state. For the observational and clock seman-
tics this structure is simply a set of states, but the synchronous perfect recall
semantics requires a function that maps a fixed, finite sequence of observations
to the set of final states of traces consistent with this sequence of observations,
as detailed in [10]. The system is implemented in Haskell, and relies on David
Long’s BDD package, implemented in C, for efficient BDD operations.
Related Work: While other systems in recent years have implemented model
checking for the logic of knowledge, MCK is unique in its support of a range
of knowledge semantics and choices of temporal language. Additionally, fairness
constraints and the common knowledge operator have not been treated in prior
work, and the clock semantics has not previously been implemented.

The theoretical basis for MCK is largely described in [8-10], which employs
LTL as the temporal language. Theory for model checking a combination of the
perfect recall semantics and CTL is discussed in [2, 11].

Wooldridge and van der Hoek [7] use a connection between knowledge and the
notion of local proposition, introduced in [3], to reduce model checking knowledge
with respect to the observational semantics to temporal model checking in SPIN.
This reduction works for positive occurrences of knowledge operators but leads
to an explosion in the number of temporal formulas that need to be checked
when there are negative occurrences. MCK handles negative occurrences directly
without incurring such an explosion.

Our work is motivated more by issues of information flow in distributed
systems than by distributed artificial intelligence concerns. Other work in the
Distributed AI literature on model checking multi-agent systems, such as [,
4], use epistemic modalities such as “belief” that are not given an information
theoretic semantics as in Halpern and Moses [5]. The same remark applies to
related work in the literature on cryptographic protocol verification.
Conclusion: MCK can be downloaded at http://www.cse.unsw.edu.au/ mck.
The system is under active development and other instances of the known algo-
rithms for model checking knowledge and time will be added in due course.

References

1. M. Benerecetti, F. Giunchiglia, and L. Serafini. Multiagent model checking. Journal
of Logic and Computation, 8(3):401-423, Aug 1997.

2. P. Bertoli, A. Cimatti, M. Pistore, and P. Taverso. Plan validation for extended
goals under partial observability (preliminary report). In AIPS 2002 Workshop on
Planning via Model Checking, Toulouse, France, April 2002.

3. K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of
local propositions. In Itzhak Gilboa, editor, Theoretical Aspects of Rationality and
Knowledge, pages 29-41. Morgan Kaufmann,98.

4. R. H. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model
checking multi-agent programs with CASP. In CAV, pages 110-113, 2003.

5. J. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, 1990.

6. J. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A manifesto.
Technical Report RJ 7963, IBM Almaden Research Center, 1991.

7. W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In 9th
Workshop on SPIN (Model Checking Software), Grenoble, April 2002.

8. R. van der Meyden. Common knowledge and update in finite environments. In-
formation and Computation, 140(2), 1998.

9. R. van der Meyden and N.S. Shilov. Model checking knowledge and time in sys-
tems with perfect recall. In Proc. Conf. on Software Technology and Theoretical
Computer Science, Springer LNCS No 1738, pages 262-273, Chennai, 1999.

10. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In IEEE Computer Security Foundations Workshop, 2004.

11. N. Y. Shilov and N.O. Garanina. Model checking knowledge and fixpoints. In
FLOC workshop on Fized Points in Computer Science, 2002.

