
Verified Synthesis of Knowledge-Based
Programs in Finite Synchronous Environments

Peter Gammie1,2

1 The Australian National University, Canberra ACT 0200, Australia
Peter.Gammie@anu.edu.au

WWW home page: http://peteg.org/
2 National ICT Australia

Abstract. Knowledge-based programs (KBPs) are a formalism for di-
rectly relating agents’ knowledge and behaviour. Here we present a gen-
eral scheme for compiling KBPs to executable automata with a proof of
correctness in Isabelle/HOL. We develop the algorithm top-down, using
Isabelle’s locale mechanism to structure these proofs, and show that two
classic examples can be synthesised using Isabelle’s code generator.

1 Introduction

Imagine a robot stranded at zero on a discrete number line, hoping to reach and
remain in the goal region {2, 3, 4}. The environment helpfully pushes the robot
to the right, zero or one steps per unit time, and the robot can sense the current
position with an error of plus or minus one. If the only action the robot can take
is to halt at its current position, what program should it execute?

. . .
0 1 2 3 4 5 6

goal

An intuitive way to specify the robot’s behaviour is with this knowledge-based
program (KBP), using the syntax of Dijkstra’s guarded commands:

do
[] Krobot goal → Halt
[] ¬Krobot goal→ Nothing

od

where “Krobot goal” intuitively denotes “the robot knows it is in the goal region”
[8, Example 7.2.2]. We will make this precise in §2, but for now note that what
the robot knows depends on the rest of the scenario, which in general may involve
other agents also running KBPs. In this sense a KBP is a very literal rendition of
a venerable artificial intelligence trope, that what an agent does should depend

http://peteg.org/

on its knowledge, and what an agent knows depends on what it does. It has
been argued elsewhere [4,7,8] that this is a useful level of abstraction at which to
reason about distributed systems, and some kinds of multi-agent systems [21].
The downside is that these specifications are not directly executable, and it may
take significant effort to find a concrete program that has the required behaviour.

The robot does have a simple implementation however: it should halt iff the
sensor reads at least 3. That this is correct can be shown by an epistemic model
checker such as MCK [10] or pencil-and-paper refinement [7]. In contrast the
goal of this work is to algorithmically discover such implementations, which is a
step towards making the work of van der Meyden [18] practical.

The contributions of this work are as follows: §2 develops enough of the theory
of KBPs in Isabelle/HOL [19] to support a formal proof of the possibility of
their implementation by finite-state automata (§3). The later sections extend
this development with a full top-down derivation of an original algorithm that
constructs these implementations (§4) and two instances of it (§5 and §6), culmi-
nating in the mechanical synthesis of two standard examples from the literature:
the aforementioned robot (§5.1) and the muddy children (§6.1).

We make judicious use of parametric polymorphism and Isabelle’s locale mech-
anism [2] to establish and instantiate this theory in a top-down style. Isabelle’s
code generator [12] allows the algorithm developed here to be directly executed
on the two examples. The complete development, available from the Archive of
Formal Proofs [9], includes the full formal details of all claims made here.

In the following we adopt the Isabelle convention of prefixing fixed but arbitrary
types with an apostrophe, such as ′a, and suffixing type constructors as in ′a
list. Other non-standard syntax will be explained as it arises.

2 Semantics of Knowledge-Based Programs

We use what is now a standard account of the multi-agent (multi-modal) propo-
sitional logic of knowledge [5,8]. The language of the guards is propositional,
augmented by one knowledge modality per agent and parameterised by a type
′p of propositions and ′a of agents:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ

Formulas are interpreted with respect to a Kripke structure, which consists of a
set of worlds of type ′w, an equivalence relation ∼a for each agent a over these
worlds, and a way of evaluating propositions at each world; these are collected in
a record of type (′a, ′p, ′w) KripkeStructure. We define satisfaction of a formula
ϕ at a world w in structure M as follows:

M , w |= p iff p is true at w in M
M , w |= ¬ϕ iff M , w |= ϕ is false
M , w |= ϕ ∧ ψ iff M , w |= ϕ and M , w |= ψ
M , w |= Ka ϕ iff M , w ′ |= ϕ for all worlds w ′ where w ∼a w ′ in M

Intuitively w ∼a w ′ if a cannot distinguish between worlds w and w ′; the final
clause expresses the idea that an agent knows ψ iff ψ is true at all worlds she
considers possible (relative to world w)3. This semantics supports nested modal
operators, so, for example, “the sender does not know that the receiver knows
the bit that was sent” can be expressed.

We represent a knowledge-based program (KBP) of type (′a, ′p, ′aAct) KBP as
a list of records with fields guard and action, where the guards are knowledge
formulas and the actions elements of the ′aAct type, and expect there to be one
per agent. Lists are used here and elsewhere to ease the generation of code (see
§5 and §7). The function set maps a list to the set of its elements.

Note that the robot of §1 cannot directly determine its exact position because of
the noise in its sensor, which means that we cannot allow arbitrary formulas as
guards. However an agent a can evaluate formulas of the form Kaψ that depend
only on the equivalence class of worlds a considers possible. That ϕ is a boolean
combination of such formulas is denoted by subjective a ϕ.

We model the agents’ interactions using a finite environment, following van der
Meyden [18], which consist of a finite type ′s of states, a set envInit of initial
states, a function envVal that evaluates propositions at each state, and a projec-
tion envObs that captures how each agent instantaneously observes these states.
The system evolves using the transition function envTrans, which incorporates
the environment’s non-deterministic choice of action envAction and those of the
agents’ KBPs into a global state change. We collect these into an Isabelle locale:

locale Environment =
fixes jkbp :: ′a ⇒ (′a, ′p, ′aAct) KBP

and envInit :: (′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ (′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

assumes subj : ∀ a gc. gc ∈ set (jkbp a) −→ subjective a (guard gc)

A locale defines a scope where the desired types, variables and assumptions are
fixed and can be freely appealed to. Later we can instantiate these in various
ways (see §4) and also extend the locale (see §3.1).

In the Environment locale we compute the actions enabled at world w in an
arbitrary Kripke structure M for each agent using a list comprehension:

definition jAction :: (′a, ′p, ′w) KripkeStructure ⇒ ′w ⇒ ′a ⇒ ′aAct list where
jAction M w a ≡ [action gc. gc ← jkbp a, (M , w |= guard gc)]

This function composes with envTrans provided we can find a suitable Kripke
structure and world. With the notional mutual dependency between knowledge
and action of §1 in mind, this structure should be based on the set of traces

3 As one would expect there has been extensive debate over the properties of knowl-
edge; the reader is encouraged to consult [8, Chapter 2]. Also their Chapter 7 presents
a more general (but non-algorithmic) account of KBPs at a less harried pace.

generated by jkbp in this particular environment, i.e., the very thing we are in
the process of defining. As with all fixpoints there may be zero, one or many
solutions; the following construction considers a broadly-applicable special case
for which unique solutions exist.

We represent the possible evolutions of the system as finite sequences of states,
represented by a left-recursive type ′s Trace with constructors tInit s and t s,
equipped with tFirst, tLast, tLength and tMap functions.

Our construction begins by deriving a Kripke structure from an arbitrary set of
traces T. The equivalence relation on these traces can be defined in a variety
of ways [8,18]; here we derive the relation from the synchronous perfect-recall
(SPR) view, which records all observations made by an agent:

definition spr-jview :: ′a ⇒ ′s Trace ⇒ ′obs Trace where
spr-jview a ≡ tMap (envObs a)

The Kripke structure mkM T relates all traces that have the same SPR view,
and evaluates propositions at the final state of the trace, i.e., envVal ◦ tLast. In
general we apply the adjective “synchronous” to relations that “tell the time”
by distinguishing all traces of distinct lengths.

Using this structure we construct the sequence of temporal slices that arises from
interpreting jkbp with respect to T by recursion over the time:

fun jkbpTn :: nat ⇒ ′s Trace set ⇒ ′s Trace set where
jkbpT0 T = { tInit s |s. s ∈ set envInit }
| jkbpTSuc n T = { t envTrans eact aact (tLast t) |t eact aact .

t ∈ jkbpTn T ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM T) t a)) }

We define jkbpT T to be
⋃

n jkbpTn T. This gives us a closure condition on sets
of traces T : we say that T represents jkbp if it is equal to jkbpT T. Exploiting
the synchrony of the SPR view, we can inductively construct traces of length
n+ 1 by interpreting jkbp with respect to all those of length n:

fun jkbpCn :: nat ⇒ ′s Trace set where
jkbpC0 = { tInit s |s. s ∈ set envInit }
| jkbpCSuc n = { t envTrans eact aact (tLast t) |t eact aact .

t ∈ jkbpCn ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM jkbpCn) t a)) }

We define mkMCn to be mkM jkbpCn, and jkbpC to be
⋃

n. jkbpCn with corre-
sponding Kripke structure mkMC.

We show that jAction mkMC t = jAction mkMCn t for t ∈ jkbpCn, i.e., that the
relevant temporal slice suffices for computing jAction, by appealing to a multi-
modal generalisation of the generated model property [5, §3.4]. This asserts that
the truth of a formula at a world w depends only on the worlds reachable from
w in zero or more steps, using any of the agents’ accessibility relations at each
step. We then establish that jkbpTn jkbpC = jkbpCn by induction on n, implying
that jkbpC represents jkbp in the environment of interest. Uniqueness follows by
a similar argument, and so:

Theorem 1. The set jkbpC canonically represents jkbp.

This is a specialisation of [8, Theorem 7.2.4].

3 Automata for KBPs

We now shift our attention to the problem of synthesising standard finite-state
automata that implement jkbp. This section summarises the work of van der
Meyden [18]. In §4 we will see how these are computed.

The essence of these constructions is to represent an agent’s state of knowledge
by the state of an automaton (of type ′ps), also termed a protocol. This state
evolves in response to the agent’s observations of the system using envObs, and
is deterministic as it must encompass the maximal uncertainty she has about
the system. Our implementations take the form of Moore machines, which we
represent using a record:

record (′obs, ′aAct , ′ps) Protocol =
pInit :: ′obs ⇒ ′ps pTrans :: ′obs ⇒ ′ps ⇒ ′ps pAct :: ′ps ⇒ ′aAct list

Transitions are labelled by observations, and states with the set of actions en-
abled by jkbp. The initialising function pInit maps an initial observation to an
initial protocol state. A joint protocol jp is a mapping from agents to protocols.
The term runJP jp t runs jp on a trace t in the standard manner, yielding a
function from agents to protocol states. Similarly actJP jp t denotes the joint
action of jp on trace t, i.e., λa. pAct (jp a) (runJP jp t a).

That a joint protocol jp implements jkbp is to say that jp and jkbp yield identical
joint actions when run on any canonical trace t ∈ jkbpC. To garner some intu-
ition about the structure of such implementations, our first automata construc-
tion explicitly represents the partition of jkbpC induced by spr-jview, yielding an
infinite-state joint protocol:

definition mkAuto :: ′a ⇒ (′obs, ′aAct , ′s Trace set) Protocol where
mkAuto a ≡ (| pInit = λobs. { t ∈ jkbpC . spr-jview a t = tInit obs },

pTrans = λobs ps. { t |t t ′. t ∈ jkbpC ∧ t ′ ∈ ps
∧ spr-jview a t = spr-jview a t ′ obs },

pAct = λps. jAction mkMC (SOME t . t ∈ ps) a |)

abbreviation equiv-class a tobs ≡ { t ∈ jkbpC . spr-jview a t = tobs }

The function SOME is Hilbert’s indefinite description operator ε, used here to
choose an arbitrary trace from the protocol state.

Running mkAuto on a trace t ∈ jkbpC yields the equivalence class of t for agent a,
equiv-class a (spr-jview a t), and as pAct clearly prescribes the expected actions
for subjective formulas, we have:

Theorem 2. mkAuto implements jkbp in the given environment.

3.1 A sufficient condition for finite-state implementations

van der Meyden showed that the existence of a simulation from mkMC to a finite
structure is sufficient for there to be a finite-state implementation of jkbp [18,
Theorem 2]. We say that a function f, mapping the worlds of Kripke structure
M to those of M ′ is a simulation if it has the following properties:

– Propositions evaluate identically at u ∈ worlds M and f u ∈ worlds M ′;
– If two worlds u and v are related in M for agent a, then f u and f v are also

related in M ′ for agent a; and
– If two worlds f u and v ′ are related in M ′ for agent a, then there exists a

world v ∈ worlds M such that f v = v ′ and u and v are related in M for a.

From these we have M , u |= ϕ iff M ′, f u |= ϕ by straightforward structural
induction on ϕ [5, §3.4, Ex. 3.60]. This result lifts through jAction and hence
jkbpCn. The promised finite-state protocol simulates the states of mkAuto.

4 An effective construction

The remaining algorithmic obstruction in mkAuto is the appeal to the infinite set
of canonical traces jkbpC. While we could incrementally maintain the temporal
slices of traces jkbpCn, ideally the simulated equivalence classes would directly
support the necessary operations. We therefore optimistically extend van der
Meyden’s construction by axiomatising these functions in the SimEnvironment
locale of Figure 1, and making the following definition:

definition mkAutoSim :: ′a ⇒ (′obs, ′aAct , ′rep) Protocol where
mkAutoSim a ≡

(| pInit = simInit a,
pTrans = λobs ec. (SOME ec ′. ec ′ ∈ set (simTrans a ec) ∧ simObs a ec ′ = obs),
pAct = λec. simAction ec a |)

The specification of these functions is complicated by the use of simAbs to incor-
porate some data refinement [20], which allows the type ′rep of representations of
simulated equivalence classes (with type ′ss set) to depend on the entire context.
This is necessary because finite-state implementations do not always exist with
respect to the SPR view [18, Theorem 5], and so we must treat special cases
that may use quite different representations. If we want a once-and-for-all-time
proof of correctness for the algorithm, we need to make this allowance here.

A routine induction on t ∈ jkbpC shows that mkAutoSim faithfully maintains a
representation of the simulated equivalence class of t, which in combination with
the locale assumption simAction gives us:

Theorem 3. mkAutoSim implements jkbp in the given environment.

Note that we are effectively asking simTrans to compute the actions of jkbp
for all agents using only a representation of a simulated equivalence class for the

locale SimEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs

for jkbp :: ′a ⇒ (′a, ′p, ′aAct) KBP
and envInit :: (′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ (′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

— Simulation operations
+ fixes simf :: ′s Trace ⇒ ′ss :: finite

and simRels :: ′a ⇒ (′ss × ′ss) set
and simVal :: ′ss ⇒ ′p ⇒ bool

— Adequacy of representations
and simAbs :: ′rep ⇒ ′ss set

— Algorithmic operations
and simObs :: ′a ⇒ ′rep ⇒ ′obs
and simInit :: ′a ⇒ ′obs ⇒ ′rep
and simTrans :: ′a ⇒ ′rep ⇒ ′rep list
and simAction :: ′rep ⇒ ′a ⇒ ′aAct list

assumes simf : sim mkMC (mkKripke (simf ‘ jkbpC) simRels simVal) simf
and simInit :

∀ a obs. obs ∈ envObs a ‘ set envInit
−→ simAbs (simInit a obs) = simf ‘ equiv-class a (tInit obs)

and simObs:
∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)

−→ simObs a ec = envObs a (tLast t)
and simAction:

∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)
−→ set (simAction ec a) = set (jAction mkMC t a)

and simTrans:
∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)

−→ simAbs ‘ set (simTrans a ec)
= { simf ‘ equiv-class a (spr-jview a (t ′ s)) |t ′ s.

t ′ s ∈ jkbpC ∧ spr-jview a t ′ = spr-jview a t}

Fig. 1. The SimEnvironment locale extends the Environment locale with simulation
and algorithmic operations. The backtick ‘ is Isabelle/HOL’s image-of-a-set-under-a-
function operator. The function mkKripke constructs a Kripke structure from its three
components. By sim M M ′ f we assert that f is a simulation from M to M ′.

particular agent a. This contrasts with our initial automata construction mkAuto
(§3) that appealed to jkbpC for this purpose. We will see in §5 and §6 that our
concrete simulations do retain sufficient information.

4.1 A synthesis algorithm

We now show how automata that implement jkbp can be constructed using the
operations specified in SimEnvironment. Taking care with the definitions allows
us to extract an executable version via Isabelle/HOL’s code generator [12].

We represent the automaton under construction by a pair of maps, one for
actions, mapping representations to lists of agent actions, and the other for
the transition function, mapping representations and observations to represen-
tations. These maps are represented by the types ′ma and ′mt respectively, with
operations collected in aOps and tOps. These MapOps records contain empty,
lookup and update functions, specified in the standard way with the extra con-
dition that they respect simAbs on the domains of interest.

abbreviation jkbpSEC ≡
⋃

a. { simf ‘ equiv-class a (spr-jview a t) |t . t ∈ jkbpC }

locale Algorithm =
SimEnvironment jkbp envInit envAction envTrans envVal envObs

simf simRels simVal simAbs simObs simInit simTrans simAction
for jkbp :: ′a ⇒ (′a, ′p, ′aAct) KBP

— ... as for SimEnvironment ...

+ fixes aOps :: (′ma, ′rep, ′aAct list) MapOps
and tOps :: (′mt , ′rep × ′obs, ′rep) MapOps

assumes aOps: MapOps simAbs jkbpSEC aOps
and tOps: MapOps (λk . (simAbs (fst k), snd k)) (jkbpSEC × UNIV) tOps

UNIV is the set of all elements of a type. The repetition of type signatures in
these extended locales is tiresome but necessary to bring the type variables into
scope. As we construct one automaton per agent, we introduce another locale:

locale AlgorithmForAgent = Algorithm — ... + fixes a :: ′a

The algorithm traverses the representations of simulated equivalence classes of
jkbpC reachable via simTrans. We use the executable depth-first search (DFS)
theory due to Berghofer and Krauss [3], mildly generalised to support data re-
finement. The DFS locale requires the following definitions, shown in Figure 2:

– an initial automaton k-empt ;
– the initial frontier frontier-init is the partition of the set of initial states

under envObs a;
– the successor function k-succs is exactly simTrans a;
– for each reachable state the action and transition maps are updated with

k-ins; and
– the visited predicate k-memb uses the domain of the aOps map.

partial-function (tailrec) gen-dfs where
gen-dfs succs ins memb S wl = (case wl of

[] ⇒ S
| (x ·xs) ⇒ if memb x S then gen-dfs succs ins memb S xs

else gen-dfs succs ins memb (ins x S) (succs x @ xs))

definition alg-dfs aOps tOps frontier-init simObs simTrans simAction ≡
let k-empt = (empty aOps, empty tOps);

k-memb = (λs A. isSome (lookup aOps (fst A) s));
k-succs = simTrans;
acts-update = (λec A. update aOps ec (simAction ec) (fst A));
trans-update = (λec ec ′ at . update tOps (ec, simObs ec ′) ec ′ at);
k-ins = (λec A. (acts-update ec A, foldr (trans-update ec) (k-succs ec) (snd A)))

in gen-dfs k-succs k-ins k-memb k-empt frontier-init

Fig. 2. The algorithm. The symbol @ denotes list concatenation.

Instantiating the DFS locale is straightforward:

sublocale AlgorithmForAgent
< KBPAlg!: DFS k-succs k-is-node k-invariant k-ins k-memb k-empt simAbs

This conditional interpretation is a common pattern in these proofs: it says
that we can discharge the requirements of the DFS locale while appealing to
the AlgorithmForAgent context, i.e., the constraints in the SimEnvironment locale
and those for our two maps. The resulting definitions and lemmas appear in the
AlgorithmForAgent context with prefix KBPAlg.

Our invariant over the reachable state space is that the automaton under con-
struction is well-defined with respect to the simAction and simTrans functions.
The DFS theory shows that the traversal visits all states reachable from the ini-
tial frontier, and we show that the set of reachable equivalence classes coincides
with the partition of jkbpC under spr-jview a, modulo simulation and represen-
tation. Thus the algorithm produces an implementation of jkbp for agent a.

We trivially generalise the fixed-agent lemmas to the multi-agent locale:

sublocale Algorithm < KBP!: AlgorithmForAgent — ... a for a

The output of the DFS is converted into a protocol using simInit and lookup on
the maps; call this mkAutoAlg. We show in the Algorithm context that mkAutoAlg
prescribes the same actions as mkAutoSim for all t ∈ jkbpC, and therefore:

Theorem 4. mkAutoAlg is a finite-state implementation of jkbp in the given
environment.

The following sections show that this theory is sound and effective by fulfilling
the promises made in the SimEnvironment locale of Figure 1: §5 demonstrates a
simulation and representation for the single-agent case, which suffices for finding
an implementation of the robot’s KBP from §1; §6 treats a multi-agent scenario
general enough to handle the classic muddy children puzzle.

5 Perfect Recall for a Single Agent

Our first simulation treats the simple case of a single agent executing an arbitrary
KBP in an arbitrary environment, such as the robot of §1. We work in the
SingleAgentEnvironment locale, which is the Environment locale augmented with
a variable agent denoting the element of the ′a type. We seek a finite space that
simulates mkMC; as we later show, satisfaction at t ∈ jkbpC is a function of the
set of final states of the traces that agent considers possible, i.e., of:

definition spr-jview-abs :: ′s Trace ⇒ ′s set where
spr-jview-abs t ≡ tLast ‘ equiv-class agent (spr-jview agent t)

To evaluate propositions we include the final state of t in our simulation:

definition spr-sim-single :: ′s Trace ⇒ ′s set × ′s where
spr-sim-single t ≡ (spr-jview-abs t , tLast t)

In the structure mkMCS, (U , u) ∼a (V , v) iff U = V and envObs agent u =
envObs agent v, and propositions are evaluated with envVal ◦ snd. Then:

Theorem 5. mkMCS simulates mkMC.

An optimisation is to identify related worlds, recognising that the agent behaves
the same at all of these. This quotient is isomorphic to spr-jview-abs ‘ jkbpC,
and so the algorithm effectively simplifies to the familiar subset construction for
determinising finite-state automata.

We now address algorithmic issues. As the representations of equivalence classes
are used as map keys, it is easiest to represent them canonically. A simple ap-
proach is to use ordered distinct lists of type ′a odlist for the sets and tries for
the maps. Therefore environment states ′s must belong to the class linorder of
linearly-ordered types.

For a set of states X, we define a function eval X ϕ that computes the subset
of X where ϕ holds. The only interesting case is that for knowledge: eval X
(Ka ψ) evaluates to X if eval X ψ = X, and ∅ otherwise. This corresponds to
standard satisfaction when X represents spr-jview-abs t for some t ∈ jkbpC. The
requisite simObs, simInit, simAction and simTrans functions are routine, as is
instantiating the Algorithm locale. Thus we have an algorithm for all single-agent
scenarios that satisfy the Environment locale.

A similar simulation can be used to show that there always exist implementa-
tions with respect to the multi-agent clock view [18, Theorem 4], the weakest
synchronous view that considers only the time and most-recent observation.

5.1 The Robot

We now feed the algorithm, the simulated operations of the previous section and
a model of the autonomous robot of §1 to the Isabelle/HOL code generator. To
obtain a finite environment we truncate the number line at 5. This is intuitively

sound for the purposes of determinining the robot’s behaviour due to the syn-
chronous view and the observation that if it reaches this rightmost position then
it can never satisfy its objective. Running the resulting Haskell code yields this
automaton, which we have minimised using Hopcroft’s algorithm [11]:

{0} {0,1}0,1,2

0

{2}

3

{0,1,2}1,2

1,2,3

0

1

{3}

4

{2,3}3

{1,2,3}

2

2,3,4
1

4

2,3

0
1 2

{4}5

{3,4}

4

{2,3,4}3

3,4,5

2

5

3,4

1

2

5

4

3

0,1

The inessential labels on the states indicate the robot’s knowledge about its
position, and those on the transitions are the observations yielded by the sensor.
Double-circled states are those in which the robot performs the Halt action, the
others Nothing. We can see that if the robot learns that it is in the goal region
then it halts for all time, and that it never overshoots the goal region. We can
also see that traditional minimisation does not yield the smallest automaton we
could hope for. This is because the algorithm does not specify what happens on
invalid observations, which are modelled as errors instead of don’t-cares.

6 Perfect Recall in Broadcast Environments with
Deterministic Protocols

We now consider a more involved multi-agent case, where deterministic JKBPs
operate in non-deterministic environments and communicate via broadcast. It is
well known [8, Chapter 6] that simultaneous broadcast has the effect of making
information common knowledge; roughly put, the agents all learn the same things
at the same time as the system evolves, so the relation amongst the agents’ states
of knowledge never becomes more complex than it is in the initial state.

The broadcast is modelled as a common observation of the environment’s state
that is included in all agents’ observations. We also allow the agents to maintain
entirely disjoint private states of type ′as. This is expressed in the locale in
Figure 3, where the constraints on envTrans and envObs enforce the disjointness.

record (′a, ′es, ′as) BEState =
es :: ′es
ps :: (′a × ′as) odlist — Associates an agent with her private state.

locale DetBroadcastEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs

for jkbp :: ′a ⇒ (′a :: {finite, linorder}, ′p, ′aAct) KBP
and envInit :: (′a, ′es :: {finite, linorder}, ′as :: {finite, linorder}) BEState list
and envAction :: (′a, ′es, ′as) BEState ⇒ ′eAct list
and envTrans :: ′eAct ⇒ (′a ⇒ ′aAct)

⇒ (′a, ′es, ′as) BEState ⇒ (′a, ′es, ′as) BEState
and envVal :: (′a, ′es, ′as) BEState ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ (′a, ′es, ′as) BEState ⇒ (′cobs × ′as option)

+ fixes agents :: ′a odlist
and envObsC :: ′es ⇒ ′cobs

defines envObs a s ≡ (envObsC (es s), ODList.lookup (ps s) a)
assumes agents: ODList.toSet agents = UNIV

and envTrans: ∀ s s ′ a eact eact ′ aact aact ′.
ODList.lookup (ps s) a = ODList.lookup (ps s ′) a ∧ aact a = aact ′ a
−→ ODList.lookup (ps (envTrans eact aact s)) a

= ODList.lookup (ps (envTrans eact ′ aact ′ s ′)) a
and jkbpDet : ∀ a. ∀ t ∈ jkbpC . length (jAction mkMC t a) ≤ 1

Fig. 3. The DetBroadcastEnvironment locale.

Similarly to §5, we seek a suitable simulation space by considering what deter-
mines an agent’s knowledge. Intuitively any set of traces that is relevant to the
agents’ states of knowledge with respect to t ∈ jkbpC need include only those
with the same common observation as t :

definition tObsC :: (′a, ′es, ′as) BEState Trace ⇒ ′cobs Trace where
tObsC ≡ tMap (envObsC ◦ es)

Unlike the single-agent case of §5, it is not sufficient for a simulation to record
only the final states; we need to relate the initial private states of the agents with
the final states they consider possible, as the initial states may contain informa-
tion that is not common knowledge. This motivates the following abstraction:

definition tObsC-abs t ≡ {(tFirst t ′, tLast t ′) |t ′. t ′ ∈ jkbpC ∧ tObsC t ′ = tObsC t}

We can predict an agent’s final private state on t ′ ∈ jkbpC where tObsC t ′ =
tObsC t from the agent’s private state in tFirst t ′ and tObsC-abs t due to the
determinacy requirement jkbpDet and the constraint envTrans. Thus the agent’s
state of knowledge on t is captured by the following simulation:

record (′a, ′es, ′as) SPRstate =
sprFst :: (′a, ′es, ′as) BEState
sprLst :: (′a, ′es, ′as) BEState
sprCRel :: ((′a, ′es, ′as) BEState × (′a, ′es, ′as) BEState) set

definition spr-sim :: (′a, ′es, ′as) BEState Trace ⇒ (′a, ′es, ′as) SPRstate where
spr-sim t ≡ (| sprFst = tFirst t , sprLst = tLast t , sprCRel = tObsC-abs t |)

We build a Kripke structure mkMCS of simulated traces by relating worlds U
and V for agent a where envObs a (sprFst U) = envObs a (sprFst V) and envObs
a (sprLst U) = envObs a (sprLst V), and sprCRel U = sprCRel V. Propositions
are evaluated by envVal ◦ sprLst. We have:

Theorem 6. mkMCS simulates mkMC.

Establishing this is routine, where the final simulation property follows from our
ability to predict agents’ private states on canonical traces as mentioned above.

As in §5, we can factor out the common parts of these equivalence classes to
yield a denser representation that uses a pair of relations and thus a four-level
trie. We omit the tedious details of placating the SimEnvironment locale.

van der Meyden [18, §7] used this simulation to obtain finite-state implemen-
tations for non-deterministic KBPs under the extra assumptions that the parts
of the agents’ actions that influence envAction are broadcast and recorded in
the system states, and that envAction be oblivious to the agents’ private states.
Therefore those results do not subsume the ones presented here, just as those of
this section do not subsume those of §5.

6.1 The Muddy Children

The classic muddy children puzzle [8, §1.1, Example 7.2.5] is an example of
a multi-agent broadcast scenario that exemplifies non-obvious reasoning about
mutual states of knowledge. Briefly, there are N > 2 children playing together,
some of whom get mud on their foreheads. Each can see the others’ foreheads but
not their own. A mother observes the situation and either says that everyone is
clean, or says that someone is dirty. She then asks “Do any of you know whether
you have mud on your own forehead?” over and over. Assuming the children
are perceptive, intelligent, truthful and they answer simultaneously, what will
happen?

Each agent childi reasons with the following KBP:

do

[] K̂childi
muddyi → Say “I know if my forehead is muddy”

[] ¬K̂childi
muddyi → Say nothing

od

where K̂aϕ abbreviates Kaϕ ∨ Ka¬ϕ. As the mother has complete knowledge
of the situation, we integrate her behaviour into the environment.

In general the determinism of a KBP is a function of the environment, and may
be difficult to establish. In this case and many others, however, determinism is

syntactically manifest as the guards are logically disjoint, independently of the
knowledge subformulas.

The model records a child’s initial observation of the mother’s pronouncement
and the muddiness of the other children in her initial private state, and these
states are preserved by envTrans. The recurring common observation is all of the
children’s public responses to the mother’s questions. Being able to distinguish
these types of observations is crucial to making this a broadcast scenario.

CC

KKK

CC
KNN

CM
NNK

NNN

MC

NKN

NNN

MM NNN

KNK

KKN

NNN

NKK

Fig. 4. The protocol of child0.

Running the algorithm for three chil-
dren and minimising yields the au-
tomaton in Figure 4 for child0. The
initial transitions are labelled with the
initial observation, i.e., the cleanli-
ness “C” or muddiness “M” of the
other two children. The dashed ini-
tial transition covers the case where
everyone is clean; in the others the
mother has announced that some-
one is dirty. Later transitions simply
record the actions performed by each
of the agents, where “K” is the first
action in the above KBP, and “N”
the second. Double-circled states are
those in which child0 knows whether
she is muddy, and single-circled where
she does not.

To the best of our knowledge this is the first time that an implementation of the
muddy children has been automatically synthesised.

7 Perspective and related work

The most challenging and time-consuming aspect of mechanising this theory was
making definitions suitable for the code generator. For example, we could have
used a locale to model the interface to the maps in §4, but as as the code gen-
erator presently does not cope with functions arising from locale interpretation,
we are forced to say things at least twice if we try to use both features, as we
implicitly did in Figure 2. Whether it is more convenient or even necessary to
use a record and predicate or a locale presently requires experimentation and
perhaps guidance from experienced users.

As reflected by the traffic on the Isabelle mailing list, a common stumbling block
when using the code generator is the treatment of sets. The existing libraries are
insufficiently general: Florian Haftmann’s Cset theory4 does not readily support
a choice operator, such as the one we used in §3. Even the heroics of the Isabelle

4 The theory Cset accompanies the Isabelle/HOL distribution.

Collections Framework [15] are insufficient as there equality on keys is structural
(i.e., HOL equality), forcing us to either use a canonical representation (such as
ordered distinct lists) or redo the relevant proofs with reified operations (equality,
orderings, etc.). Neither of these is satisfying from the perspective of reuse.

Working with suitably general theories, e.g., using data refinement, is difficult
as the simplifier is significantly less helpful for reasoning under abstract quo-
tients, such as those in Figure 1; what could typically be shown by equational
rewriting now involves reasoning about existentials. For this reason we have only
allowed some types to be refined; the representations of observations and system
states are constant throughout our development, which may preclude some op-
timisations. The recent work of Kaliszyk and Urban [14] addresses these issues
for concrete quotients, but not for the abstract ones that arise in this kind of
top-down development.

As for the use of knowledge in formally reasoning about systems, this and similar
semantics are under increasing scrutiny due to their relation to security proper-
ties. Despite the explosion in number of epistemic model checkers [6,10,13,16],
finding implementations of knowledge-based programs remains a substantially
manual affair [1]. van der Meyden also proposed a complete semi-algorithm for
KBP synthesis [17]. A refinement framework has been developed [4,7].

The theory presented here supports a more efficient implementation using sym-
bolic techniques, ala MCK; recasting the operations of the SimEnvironment lo-
cale into boolean decision diagrams is straightforward. It is readily generalised
to other synchronous views, as alluded to in §5, and adding a common knowl-
edge modality, useful for talking about consensus [8, Chapter 6], is routine. We
hope that such an implementation will lead to more exploration of the KBP
formalism.

Acknowledgments. Thanks to Kai Engelhardt for general discussions and for
his autonomous robot graphic. Florian Haftmann provided much advice on using
Isabelle/HOL’s code generator and Andreas Lochbihler illuminated the darker
corners of the locale mechanism. The implementation of Hopcroft’s algorithm is
due to Gerwin Klein. I am grateful to David Greenaway, Gerwin Klein, Toby
Murray, Bernie Pope and the anonymous reviewers for their helpful comments
on a draft of this paper.

This work was completed while I was employed by the L4.verified project at
NICTA. NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the IT Centre of Excellence program.

References

1. Al-Bataineh, O., van der Meyden, R.: Epistemic model checking for knowledge-
based program implementation: an application to anonymous broadcast. In: Se-
cureComm (2010)

2. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM. LNCS, vol. 4108. Springer (2006)

3. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In: Klein,
G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs. http://afp.sf.
net/entries/Presburger-Automata.shtml (Dec 2009), Formal proof development

4. Bickford, M., Constable, R.L., Halpern, J.Y., Petride, S.: Knowledge-based syn-
thesis of distributed systems using event structures. In: Baader, F., Voronkov, A.
(eds.) LPAR. LNCS, vol. 3452. Springer (2004)

5. Chellas, B.: Modal Logic: an introduction. Cambridge University Press (1980)
6. van Eijck, D.J.N., Orzan, S.M.: Modelling the epistemics of communication with

functional programming. In: TFP. Tallinn University (2005)
7. Engelhardt, K., van der Meyden, R., Moses, Y.: A program refinement framework

supporting reasoning about knowledge and time. In: Tiuryn, J. (ed.) FOSSACS.
LNCS, vol. 1784. Springer (Mar 2000)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press (1995)

9. Gammie, P.: KBPs. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive
of Formal Proofs. http://afp.sf.net/entries/KBPs.shtml (May 2011), Formal proof
development

10. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D. (eds.) CAV. LNCS, vol. 3114. Springer (2004)

11. Gries, D.: Describing an Algorithm by Hopcroft. Acta Informatica 2 (1973)
12. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:

Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS. LNCS, vol. 6009. Springer
(2010)

13. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Wozna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1-4) (2008)

14. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: SAC. ACM
(2011)

15. Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP. LNCS, vol. 6172. Springer (2010)

16. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643.
Springer (2009)

17. van der Meyden, R.: Constructing finite state implementations of knowledge-based
programs with perfect recall. In: Cavedon, L., Rao, A.S., Wobcke, W. (eds.) PRI-
CAI Workshop on Intelligent Agent Systems. LNCS, vol. 1209. Springer (1996)

18. van der Meyden, R.: Finite state implementations of knowledge-based programs.
In: Chandru, V., Vinay, V. (eds.) FSTTCS. LNCS, vol. 1180. Springer (1996)

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

20. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge University Press (1998)

21. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, New York, NY,
USA (2008)

http://afp.sf.net/entries/Presburger-Automata.shtml
http://afp.sf.net/entries/Presburger-Automata.shtml
http://afp.sf.net/entries/KBPs.shtml

	Verified Synthesis of Knowledge-Based Programs in Finite Synchronous Environments

